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Summary.  Blood levels of polyunsaturated fatty acids (PUFA) are considered bio-

markers of status.  Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor 

for the long chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid 

(DPA), and docosahexaenoic acid (DHA).  Studies in normal healthy adults consuming 

western diets which are rich in linoleic acid (LA) show that supplemental ALA raises 

EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary sup-

plements have little effect on blood or breast milk DHA levels, whereas consumption of 

preformed DHA is effective in raising blood DHA levels.  Addition of ALA to the diets of 

formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels 

achievable with preformed DHA at intakes similar to typical human milk DHA supply. 

The DHA status of infants and adults consuming preformed DHA in their diets is, on av-

erage, greater than that of people who do not consume DHA.  With no other changes in 

diet, improvement of blood DHA status can be achieved with dietary supplements of 

preformed DHA, but not with supplementation of ALA, EPA, or other precursors.  
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Introduction 
The ability of mammals, and humans in particular, to metabolize alpha-linolenic acid 

(ALA, 18:3n-3) to its longer chain and more unsaturated forms including eicosapen-

taenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPAn-3, 22:5n-3) and docosa-

hexaenoic acid (DHA, 22:6n-3) is an important nutritional question since there is evi-

dence that enhanced EPA and DHA status is important for optimal health. The principal 

n-3 fatty acids, ALA, EPA and DHA, are believed to each have a constellation of physio-

logical functions and therefore it is important to understand the extent of their metabo-

lism from ALA in various mammals in order to achieve an understanding of the n-3 

PUFA that must be consumed to support desirable tissue levels.   

 

This statement addresses the degree to which the supplementation of the diet with ALA, 

EPA or DHA supports the tissue and blood levels of the major omega-3 PUFA in ani-

mals and in humans.  “Supplementation” in this context refers specifically to the addition 

of a fatty acid to a diet that is otherwise not changed, which can be achieved by fortifica-

tion of normal foods or by consumption of caplets.  In vivo metabolic studies of various 

mammals, including tracer studies in humans using stable isotopically labeled fatty ac-

ids are considered.  Since there is antagonism between n-3 and n-6 essential fatty acids 

(EFA) for tissue composition, their interplay is also briefly considered. 

 

Alpha-Linolenic Acid Supplementation – Tissue Compositional Studies in Ani-
mals 
Several reviews concerning the issue of ALA metabolism to EPA, DPAn-3 and DHA 

have appeared recently [13-17].  Rodent studies show that diets containing ALA as the 

only n-3 PUFA leads to tissue composition reflecting the full diversity of n-3 polyunsatu-

rates.  However, observations from several laboratories have indicated that the tissue 

concentrations of the long chain n-3 polyunsaturates, particularly DHA, are lower in an 

ALA-based diet than one in which the preformed LCPUFA are present.  For example, 

one study showed that rat brain and retinal DHA were greater in pups fed a diet with 

preformed EPA and DHA compared to diets containing only ALA.  Even when the ALA 

intake was increased by a factor of 10 greater than the EPA/DHA levels, the retinal DHA 
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content remained below the value found for retina in the preformed DHA diet and led to 

a diminution of the arachidonic acid (AA) content [20].  Similarly, in guinea pigs, both the 

brain and retina DHA levels were greater when a diet containing 1% ALA and 1.8% 

DHA was fed relative to one with only 7.1% ALA [22].  In the heart, the DHA level was 

over 7-fold greater in the DHA diet relative to the ALA only diet.  The liver was an even 

more extreme case, with DHA 17-fold greater when preformed DHA was in the diet.  

Glial cell phospholipids of neonatal rats contained more DHA when the dams were fed a 

diet containing DHA than when they were fed only ALA [24].  When DHA is added to a 

1 wt% ALA diet fed to the artificially reared rat pup, there is a significant increase in the 

DHA content of the brain and the liver DHA content more than doubles [26].   

 

When rodents or guinea pigs are fed a diet with high levels of ALA, increased tissue 

content of EPA and DPAn-3 is commonly observed.   In guinea pigs fed a high ALA diet, 

the DPAn-3 content of the brain, retina, heart and liver were at a higher level than in the 

DHA diet, as may be expected from much higher ALA content in the diet relative to the 

DHA [22].  Similarly, when guinea pigs were fed a high level of ALA, many tissues had 

very substantial increases in ALA, EPA and DPAn-3 but comparatively little increase in 

DHA [29].  In a study of several tissues of the suckling rat, increasing the ALA content of 

the maternal diet led to increased ALA, EPA and DPAn-3 in the whole body, skin and 

epididymal fat pads; however, there was no effect on the DHA content of these tissues 

nor of the brain or muscles [32].  The predominant fate of ALA is catabolism [16, 34] 

and carbon recycling to acetate [36].  In rodents, only about 16% of an ALA dose is 

found in rat tissues, mainly adipose, and 6% was elongated/desaturated [38].   

 

As carnivores with regular DHA intakes, cats express extremely low levels of in vivo de-

saturases such that it has only been observed in PUFA deficiency [40]; even a diet with 

the very high ALA content of 17 wt% led to plasma PC with EPA, DPAn-3 and DHA be-

low detectable limits [42].  Adding 2.3% EPA and 0.4% DHA to this diet with low ALA 

(0.9%) led to cat plasma PC with 8 % EPA, 0.8% DPAn-3 and 4.1% DHA.  In dogs, om-

nivorous animals, increasing the EPA and DHA content of the diet led to an increase in 

plasma DHA even though the reference diet with high ALA contained more than 10-fold 
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more n-3 fatty acid [44].  Similarly, ALA diets do not well support the DHA content of ca-

nine milk as does providing much lower levels of preformed EPA/DHA [46].   

 

Piglets fed a diet with 1.7% of fatty acids as ALA supplemented with DHA (0.7%) had 

lung phospholipid DHA markedly increased compared to the control group consuming 

1.7% ALA as the only dietary omega-3 [47].  Similarly, when DHA was added to piglet 

formula containing ALA, there was a significant increase in DHA in liver TG, PE, PC, PS 

and PI [48].  Increasing levels of menhaden oil in piglet formula led to increases in EPA, 

DPAn-3 and DHA in plasma in comparison to a base formula containing ALA [49].  

Brain, liver and adipose DHA increased in a dose-response manner when a DHA-

containing oil at up to 1.66% of fatty acids is fed to piglets over 28 days [50].    

 

Non-human primate studies are perhaps the most enlightening of all animal studies be-

cause PUFA metabolism is similar among omnivorous primates [51], and the primate 

brain is a much larger proportion of body weight than in subprimates. Several studies 

have been conducted in perinatal baboons investigating the relative efficacy of ALA and 

preformed DHA to supply DHA to developing tissue.  In six week old neonates, 0.23% 

of a dose of ALA was found in the brain as DHA, whereas 1.7% of a DHA dose was 

found in the brain as DHA, giving a ratio of efficacy of 7:1 [52].  This ratio was 20:1 for 

ALA and preformed DHA provided to pregnant animals [53].  When DHA was added to 

a formula containing ALA fed to baboon neonates, there was a significant DHA increase 

in the brain, retina, liver, erythrocytes and plasma relative to those fed the same formula 

without DHA, and the increase in retinal DHA was directly related to retinal function [54].  

Very recent studies demonstrate a dose-response between dietary DHA and cerebral 

cortex DHA, accompanied by global changes in gene expression at moderate and high 

DHA levels [55, 56].  These studies indicate that dietary ALA contributes to DHA deposi-

tion in fetal and neonatal brain, but the relative efficacy of dietary preformed DHA is far 

higher. 
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Alpha-Linolenic Acid Supplementation – Tissue Compositional Studies in Adults 

 

Reviews by Plourde and Cunnane [16] and by Burdge and Calder [14] of human studies 

of the effects of ALA supplementation on plasma fatty acid composition have been pub-

lished recently and the results are summarized in Table 1. 

 

Many of these studies of human plasma fatty acid composition involved a high dosage 

of ALA feeding (up to 40 g/d) and for a prolonged period of time (up to 42 weeks).  

There was in most cases a significant increase in the plasma EPA content upon ALA 

supplementation.  Generally, where it was reported, the DPA n-3 was also increased 

after ALA supplementation.  However, with few exceptions, these studies did not find a 

significant increase in plasma DHA. Burdge and Calder concluded that ALA supplemen-

tation of human subjects generally led to an increase in EPA and in several studies, in 

DPAn-3, but in little or no effects on DHA content in plasma fractions and in circulating 

blood cells [14]. A cross-study analysis of ALA supplementation in humans found in-

creased plasma ALA and EPA but no increase in DHA [57].  Of importance, the size of 

the plasma DHA pool is far greater that of EPA; therefore it may take longer time until a 

small contribution of ALA conversion to the plasma DHA pool is detected.  A flax oil 

supplementation study found no increase in either breastmilk DHA or in plasma DHA 

[21].  Overall, these data are very consistent with the idea that ALA is effective in in-

creasing the EPA and DPAn-3 content in the human blood stream but has little effect on 

DHA content. 

 

Notably, the studies that reported a significant increase in plasma DHA levels altered 

the oils in the diet, changing both ALA and LA.   Long term effects of ALA supplementa-

tion were investigated by substituting of perilla oil, high in ALA, for soy oil in foods for 20 

Japanese elderly subjects.  At three months, changes in serum fatty acids were consis-

tent with results in Table 1 since all but DHA increased; at 10 months DHA increased 

21%, and then returned to baseline three months after being switched back to soy [25].  

These data suggest that modest long term changes in dietary ALA intake may be of 

value for increasing DHA status.  However, perilla oil contains about one third the LA as 
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soy oil, so this result is confounded by a reduction in LA as well as ALA supplementa-

tion.  These data are consistent with results showing that the DHA status can be im-

proved by switching from oils rich in omega-6 PUFA to a blend incorporating an oil con-

taining a substantial quantity of ALA and less LA.  A study in India showed considerable 

increases in DHA in plasma but not in platelets, as well as in EPA, by partially substitut-

ing canola oil for sunflower (75% LA) or groundnut (peanut) oil to obtain cooking oils 

with 25-40% linoleic acid (LA) and 4% ALA [58].  Typical safflower and peanut oils have 

very low ALA (<0.1%), while canola is an excellent source of ALA (~11%) and is usually 

not higher in LA than peanut oil.  Diets with very low ALA with high LA may be driving 

low omega-3 LCPUFA status in these subjects.  Further research to confirm these find-

ings is needed. 
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Table 1.  Changes in blood EPA and DHA in humans after ALA supplementation or feed-

ing. 
Change in 

 Reference Subjects 
Duration 
(weeks) 

ALA 
(g·d-1) 

ALA form 
Blood 

fraction EPA DHA 

        
1 Szapary, 07 [1] 30 M/F 10 40 FS TL + 12% ns 
2 Goyens, 06 [4] 10 M/F 6 1.1% En M PL + 9.7% ns 
3 Harper, 06 [5] 31 M/F 26 3 FSOC TL + 53% + 4% 
4 De Groot, 04 [7] 29 F 26 2.8 M PL ns ns 
5 James, 03 [9] 15 M/F 3 1.5 FSOC PL + 23% ns 
6 Finnegan, 03 [12] 29 M/F 26 4.5 M PL + 90% ns 
7 Wallace, 03 [19] 8 M 12 3.5 FSOC PL + 60% + 2% 
8 Francois, 03 [21] 7 F 4 10 FSOC TL 228% ns 
9 17 M 6 3.7 M PL + 13% ns 
 

Li, 99 [23] 
17 M 6 15.4 M PL + 250% ns 

10 Ezaki, 99 [25] 20 M/F 42 +3 perilla TL +45% +21% 
11 Allman, 95 [27] 11 M 3.2 22 FS platelets 1.2 ns 
12 Nordstrom, 95 [28] 22 M/F 12 9.6 FSO TL + 0.02% + 0.5% 
13 Cunnane, 95 [30] 10 M/F 4 9 FS PL + 33% ns 
14 Mantzioris, 95 [31] 15 M 4 13.7 M PL + 138% + 14% 
15 Freese, 94 [33] 20 M 6 5.6 C CE -27% ns 
16 Kelley, 93 [35] 10 M 8 21 FSO PBMC +100% ns 
17 Chan, 93 [37] 8 M 6 14 C PL +100% ns 
18 Mutanen, 92 [39] 26 M 3.5 5.4 C platelets NR ns 
19 Kwon et al.,91 [41] 30 M 8 1% En C platelets ns ns 
         

20 Clark, 92 [43] 
21 M/F 
(infants) 

10 +2.6% En FSO 
TL  

RBC 
+105% +38% 

21 Jensen, 96 [45] 
80 M/F 
(infants) 

17 
+0.55, +1.3, 
+ 2.9% En 

C 
PL 

RBC 
ns,+136%,+264% 
ns,+155%,+309% 

ns,ns,+152% 
ns,ns,+147% 

Legend: FS, flaxseed; FSO, liquid flax oil; FSOC, flax oil capsule; M, margarine; C, canola; TL, total lipids; 

PL, phospholipids; CE, cholesterol esters, PBMC, peripheral blood mononuclear cells, RBC, red blood cells; 
ns = no significant change (p>0.05), % En, percent of dietary energy.  Changes in the last two columns are 
relative to the values in the control groups. 
Table modified from Plourde and Cunnane [16]. 
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Supplementation trials have been conducted with purified EPA ethyl ester, and all con-

sistently show increases in both EPA and DPAn-3 but no change in DHA in the blood.  

Table 2 outlines seven studies of EPA supplementation in adults which all show in-

creases in EPA but no increases in DHA.  Purified EPA ethyl ester (3.6 g) was given for 

4 weeks to healthy volunteers, both platelet and erythrocyte phospholipid EPA was sig-

nificantly increased but there was no change in DHA [2, 3].  Highly purified EPA (3.8 

g/d) was fed to healthy men for 7 weeks and serum phospholipid EPA and DPAn-3 

were significantly increased but DHA decreased [6].  In middle aged men, after 4 g/d of 

EPA was fed for 6 weeks, there was a marked increase in plasma phospholipid EPA 

and DPAn-3 but no increase in DHA [8].  In another study of healthy subjects, 4 g/d of 

EPA was fed for 4 weeks and platelet EPA was increased many-fold, DPAn-3 was sig-

nificantly increased but DHA was unaltered [10].  In type 2 diabetic patients, consuming 

4g/d of EPA for 6 weeks led to a 5-fold increase in plasma phospholipid EPA and a sig-

nificant increase in DPAn-3, but no change in DHA [11].  In one psychiatric trial of 

schizophrenics, 1, 2 or 4 g EPA/d for 12 weeks produced significant increases in eryth-

rocyte membrane EPA but not DHA [59].   

 

One other omega-3 PUFA, stearidonic acid (SDA, 18:4n-3), has also been studied as a 

precursor for long chain omega-3 in humans.  SDA is an intermediate metabolite be-

tween ALA and EPA in the omega-3 biosynthetic pathway.  Supplementation of SDA led 

to an elevated increase in EPA compared to ALA supplementation, but no increase in 

DHA [9, 60], consistent with studies of ALA and EPA. 
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Table 2.  Changes in blood DHA in humans after EPA supplementation or feeding. 
Change in 

 Reference Subjects 
Duration 
(weeks) 

EPA 
(g·d-1) 

EPA 
form 

Blood 
fraction EPA DHA 

        
1 Terano, 83 [2] 8 M 4 3.6 EE PL + 128% ns 
2 Hirai, 89 [3] 8 M 4 3.6 EE PL + 131% ns 
3 Grimsgaard, 97 [6] 75 M 7 3.8 EE PL +297% -15% 
4 Mori, 00 [8] 19 M/F 6 4 EE PL + 8% ns 
5 Park, 04 [10] 10 M/F 4 4 EE Platelets +1550% ns 
6 Woodman, 02 [11] 17 M/F 6 4 EE PL + 540% ns 

7 Peet, 01 [18] 
32, 32, or 
27 M/F 

12 1,2, or 4 EE RBC  + 17%, 24%,  or 39% ns 

Legend:  EE, ethyl ester; PL, phospholipids; RBC, red blood cells; ns = no significant change 
(p>0.05).  Changes in the last two columns are relative to the values in the control groups. 

he conversion of ALA to omega-3 LCPUFA in infants may be more efficient than in 

dults.  Two studies of infants included in Table 1 showed increases in DHA when ALA 

as added to infant formulas that had no LCPUFA, and holding LA constant.  Jensen et 

l. [45] found an increase in both PL and RBC DHA at the highest levels of ALA used, 

hile Clark et al., [43] found an increase in plasma total lipid DHA using a similar incre-

ent of ALA.  Clark et al. also included a group that consumed similar ALA but one-

ourth the LA level, replaced by oleic acid, that showed increases of EPA and DHA of 

29% and 29%, respectively, in erythrocyte total lipids.  Tracer data is in general accord 

ith these findings, as outlined below.  However, dietary preformed DHA raises blood 

nd tissue DHA beyond that achievable with usual changes in dietary ALA or LA intakes 

n infants [61]. 

n contrast to the results with EPA supplementation, many studies have demonstrated 

hat humans given preformed DHA supplements rapidly incorporate the fatty acid into 

he blood stream [6, 8, 10, 11, 57, 62].  There is a dose-dependent rise in plasma phos-

holipid DHA when various doses of DHA were given for 14 days [62].  In a cross-study 

eta-regression analysis of the dose-response relationship of plasma phospholipid 
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DHA, a plateau is reached at a daily value of about 3 g DHA/d in studies of 1-6 months 

in duration.  Steady state levels of DHA were reached within about 1 month in plasma 

and 4-6 months in erythrocytes after DHA supplementation was begun [57].  Human au-

topsy studies show that infants consuming formulas without preformed DHA have lower 

brain DHA than infants receiving DHA via breastmilk, and this relationship was not de-

tected for arachidonic acid [63-65]. 

 

 

Competition of n-3 and n-6 Fatty Acids 
This statement is concerned primarily with omega-3 supplementation, rather than die-

tary adjustments of other components.  Nevertheless, it is clear that the metabolism of 

n-3 fatty acids depends on other nutrients, in particular, n-6 fatty acids, due to the com-

petition of n-3 and n-6 fatty acids for the same enzymes and transport systems.  They 

also compete for incorporation into more complex lipids that comprise mammalian tis-

sues, and high levels of n-6 PUFA replace, and reduce, n-3 PUFA.    

 

The main n-6 fatty acids are LA and arachidonic acid (AA), the former being a major 

dietary constituent in western countries and those parts of the developing world with 

substantial intakes of seed oils [66].  The intake of LA has increased dramatically mainly 

due to the intake of soybean oil in the US [67], as well as sunflower, safflower, and oth-

ers.  The intake of n-3 fatty acids has been relatively constant over the past decades, 

especially in the USA, though it has risen in countries where canola oil has been intro-

duced in the last two decades.   

 

There is concern that increased intake of LA has led to an increase in AA in tissue lipids 

and a decrease in n-3 content.  Evidence of n-3 and n-6 fatty acid antagonism has 

come from tissue compositional studies as well as radioisotope studies performed in vi-

tro.  Early studies of rat liver microsomes showed that the delta-6 desaturase activity 

measured in vitro with various substrates was subject to competitive inhibition by other 

substrates.  In particular, desaturation of ALA to 18:4n-3 was inhibited by LA and, con-

versely, LA conversion to 18:3n-6 was inhibited by ALA [68].  Altered ratios of n-3 and 
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n-6 fatty acids can markedly alter tissue fatty acid compositions in rodents [69, 70], pigs 

[71, 72] and humans [43], including alteration of the nervous system [73, 74].   

 

In view of the important interaction of n-3 and n-6 essential fatty acids for tissue fatty 

acid content, Lands has integrated dietary data on rodent tissue composition and pro-

vided empirical equations that predict some features of tissue essential fatty acid com-

position [75], and enable relative changes in plasma PUFA to be estimated based on 

comparison of any particular set of diets.  A recently updated calculator is available in 

which the values for LA, ALA, long chain n-6 (meaning 20 and 22-C length polyunsatu-

rates) and long chain  n-3 fatty acid intakes can be entered, and plasma phospholipid 

n-6 and n-3 long chain polyunsaturate content can be predicted: 

http://efaeducation.nih.gov/sig/dietbalance.html

 

This calculator can be used to estimate how increasing ALA against a constant and 

Western dietary level of n-6 fatty acid dietary intake (approx 6 en%), will lead to in-

creases in plasma phospholipid long chain n-3 fatty acids.  (HUFA are defined as highly 

unsaturated fatty acids with 20- or 22 carbons and three or more double bonds).  For 

example, if typical American values (in en%) for LA (6.82) and n-6 HUFA (0.08) are 

used as the background diet, then adding n-3 PUFA in increments of 0.3 en% for ALA 

are equivalent to adding n-3 HUFA increments of 0.02 en% in terms of the effects on 

n-3 HUFA content in plasma phospholipids, suggesting an equivalency factor of about 

15 to 1 for ALA and n-3 HUFA.  It must be cautioned that the term n-3 HUFA here indi-

cates the sum of all of the n-3 HUFA: EPA, DPAn-3 and DHA; however, only the EPA 

and DPAn-3 are increasing in this example and while in most studies there is no signifi-

cant increase of DHA.  In other words, the equations summarizing many dietary experi-

ments indicate than dietary EPA is about 15-fold more effective than dietary ALA in in-

creasing the EPA/DPAn-3 content of human plasma phospholipids.  An estimate has 

been made concerning how recommended intake of n-3 HUFA can be decreased when 

LA intake is decreased in order to decrease competition for tissue lipid content [76].  In 

depth consideration of the impact of reductions in n-6 PUFA are the subject of separate 

treatments [77] 

http://efaeducation.nih.gov/sig/dietbalance.html
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Isotope studies of in vivo ALA and EPA metabolism 
Early studies of in vivo ALA metabolism in rodents indicated that conversion of ALA 

through EPA and to DHA does occur [78].  Subsequently, stable isotope labeled fatty 

acids were employed to demonstrate elongation and desaturation of ALA to EPA and 

DHA in human subjects [79].  This was followed by several studies in human infants 

where metabolism of ALA to EPA and DHA was evident [80-82], as well as a later paper 

showing a downward trend in conversion efficiency with gestational age at birth in pre-

term infants [83].  A very recent study using a whole body natural isotope tracer ap-

proach reports that an average of 42% of DHA is biosynthesized from ALA in 1 month 

old infants consuming formulas with 0.64%w/w DHA.  This drops to 11% by 3 months of 

age, and 7% at 7 months [84].   Adult metabolism of stable isotope labeled fatty acids in 

vivo has been reviewed several times [13, 15, 16].  Generally, the results have clearly 

shown metabolism of ALA to EPA with decreasing amounts of DPAn-3 and DHA [4, 85-

91] with one paper finding little or no DHA formed in young men [92].  Burdge has pro-

posed than women have a greater activity of elongation/desaturation than do men [15] 

and the finding has been confirmed in a second laboratory, though at a lower level of 

ALA conversion [93]. These findings are consistent with higher plasma DHA concentra-

tions in women compared to men [94, 95].  The extent of conversion of ALA to DHA is 

influenced by the dietary long chain polyunsaturated fatty acid content [4, 85-88, 91, 93, 

96].  ALA metabolism to EPA and DHA has been observed in humans of all ages from 

premature infants [80-82, 96] to adults in their sixth decade [87, 88, 91, 97].  DHA bio-

synthesis may be impaired in disease states such as retinitis pigmentosa [98] and is al-

tered by smoking [97].   

 

Non-human primates have been used to investigate ALA metabolism in internal organs 

and compartments not accessible in humans.  Early studies of acute omega-3 defi-

ciency in rhesus monkeys confirmed the importance of a source of omega-3 for neural 

development [99], and recent work suggests that deprivation of omega-3 early in life 

cannot be fully reversed in retina with ALA feeding [100].  Studies of DHA in pregnancy 

show that preformed DHA accumulates at 20-33 times the level of DHA biosynthesized 
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from ALA in liver, retina, and brain, and the amount of ALA found as DHA is <0.1% of 

dose [53].  Similar results are found in four week old neonates at two weeks post-dose 

[52].  DHA synthesis has also been demonstrated in late term fetal baboons at levels 

several fold above those seen for neonate baboons [101].  DHA levels rise in a dose-

dependent manner in liver, heart, and retina of 12 week old baboons consuming pre-

formed DHA [55].         

 

A key point is that although metabolism to DHA was observed in most studies of stable 

isotope-labeled ALA in humans in vivo, the quantity of labeled DHA produced was very 

small.  Highly sensitive mass spectrometric techniques used for these studies are capa-

ble of trace level detection.  This low level of conversion is consistent with the studies 

summarized in Table 1, indicating that ALA supplementation of the diet does not alter 

blood stream DHA content; dietary ALA supports a small flux of DHA through this bio-

synthetic pathway, but apparently provides a negligible net flow of mass from ALA to 

DHA when overall omega-3 are above levels required to prevent frank deficiency.   

 

 

Summary  
1.  ALA conversion to EPA, DPAn-3 and DHA in tracer studies has been observed in 

nearly all humans studied from birth through late middle age and in both males and fe-

males.  

2.  The majority of evidence from isotopic tracer studies shows that the conversion of 

ALA to DHA is on the order of 1% in infants, and considerably lower in adults.  This is 

consistent with measurements of whole body ALA oxidation which is the predominant 

fate of ALA in both rodents and humans.  These “conversion rates” must be viewed as 

markers of flux through this metabolic pathway but must not be assumed to represent a 

net change in mass. 

3.  Very few studies in adults show that blood stream or breast milk DHA concentrations 

increase following several weeks of increased dietary ALA supply, whereas most stud-

ies do not.  ALA appears to contribute little to circulating DHA when added to a diet that 

already contains some ALA and high LA levels.   
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4.  Supplementation of the diet with high levels of ALA leads to small but significant in-

creases in EPA and DPAn-3 although supplementation with preformed EPA is approxi-

mately 15-fold more efficacious in this regard. 

5.  Dietary DHA increases blood and tissue DHA beyond that achievable with consump-

tion of usual intakes of any precursor omega-3 PUFA, against a background of western 

diets providing ample n-6 fatty acids.   

6.  For a given dietary concentration of ALA, the conversion of ALA to LCPUFA is de-

creased by high dietary ratios of LA/ALA.  Moreover, n-6 fatty acid intake influences tis-

sue concentrations of the n-3 LCPUFA.  Present evidence indicates that n-3 LCPUFA 

status can be improved by increasing their intake or by decreasing LA intake, and a 

combination of the two is likely to be most effective.   
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